Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 13: 946522, 2022.
Article in English | MEDLINE | ID: covidwho-2022727

ABSTRACT

Numerous publications have underlined the link between complement C5a and the clinical course of COVID-19. We previously reported that levels of C5a remain high in the group of severely ill patients up to 90 days after hospital discharge. We have now evaluated which complement pathway fuels the elevated levels of C5a during hospitalization and follow-up. The alternative pathway (AP) activation marker C3bBbP and the soluble fraction of C4d, a footprint of the classical/lectin (CP/LP) pathway, were assessed by immunoenzymatic assay in a total of 188 serial samples from 49 patients infected with SARS-CoV-2. Unlike C5a, neither C3bBbP nor C4d readouts rose proportionally to the severity of the disease. Detailed correlation analyses in hospitalization and follow-up samples collected from patients of different disease severity showed significant positive correlations of AP and CP/LP markers with C5a in certain groups, except for the follow-up samples of the patients who suffered from highly severe COVID-19 and presented the highest C5a readouts. In conclusion, there is not a clear link between persistently high levels of C5a after hospital discharge and markers of upstream complement activation, suggesting the existence of a non-canonical source of C5a in patients with a severe course of COVID-19.


Subject(s)
COVID-19 , Complement Activation , Complement C3b , Complement C4b , Complement C5a , Complement Factor B , Peptide Fragments , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Complement C5a/analysis , Complement C5a/immunology , Complement Factor B/immunology , Complement System Proteins/immunology , Humans , Peptide Fragments/immunology , SARS-CoV-2
2.
Am J Transplant ; 22(1): 289-293, 2022 01.
Article in English | MEDLINE | ID: covidwho-1345918

ABSTRACT

Neutralizing monoclonal antibodies such as bamlanivimab emerged as promising agents in treating kidney transplant recipients with COVID-19. However, the impact of bamlanivimab on kidney allograft histology remains unknown. We report a case of a kidney transplant recipient who received bamlanivimab for COVID-19 with subsequent histologic findings of diffuse peritubular capillary C4d staining. A 33-year-old man with end-stage kidney disease secondary to hypertension who received an ABO compatible kidney from a living donor, presented for his 4-month protocol visit. He was diagnosed with COVID-19 44 days prior to his visit and had received bamlanivimab with an uneventful recovery. His 4-month surveillance biopsy showed diffuse C4d staining of the peritubular capillaries without other features of antibody-mediated rejection (ABMR). Donor-specific antibodies were negative on repeat evaluations. ABMR gene expression panel was negative. His creatinine was stable at 1.3 mg/dl, without albuminuria. Given the temporal relationship between bamlanivimab and our observations of diffuse C4d staining of the peritubular capillaries, we hypothesize that bamlanivimab might bind to angiotensin-converting enzyme 2, resulting in classical complement pathway and C4d deposition. We elected to closely monitor kidney function which has been stable at 6 months after the biopsy. In conclusion, diffuse C4d may present following bamlanivimab administration without any evidence of ABMR.


Subject(s)
COVID-19 , Kidney Transplantation , Adult , Allografts , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Biopsy , Capillaries , Complement C4b , Graft Rejection/drug therapy , Graft Rejection/etiology , Humans , Kidney , Kidney Transplantation/adverse effects , Male , Peptide Fragments , SARS-CoV-2 , Staining and Labeling
3.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1299247

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Subject(s)
COVID-19/complications , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Erythrocytes/immunology , Peptide Fragments/immunology , Respiratory Insufficiency/diagnosis , Sepsis/diagnosis , COVID-19/immunology , COVID-19/virology , Complement C3b/metabolism , Complement C4b/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Respiratory Insufficiency/immunology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Sepsis/immunology , Sepsis/metabolism , Sepsis/virology
4.
Immunobiology ; 226(3): 152093, 2021 05.
Article in English | MEDLINE | ID: covidwho-1237723

ABSTRACT

In order to study the mechanisms of COVID-19 damage following the complement activation phase occurring during the innate immune response to SARS-CoV-2, CR1 (the regulating complement activation factor, CD35, the C3b/C4b receptor), C4d deposits on Erythrocytes (E), and the products of complement activation C3b/C3bi, were assessed in 52 COVID-19 patients undergoing O2 therapy or assisted ventilation in ICU units in Rheims France. An acquired decrease of CR1 density on E from COVID-19 patients was observed (Mean = 418, SD = 162, N = 52) versus healthy individuals (Mean = 592, SD = 287, N = 400), Student's t-test p < 10-6, particularly among fatal cases, and in parallel with several parameters of clinical severity. Large deposits of C4d on E in patients were well above values observed in normal individuals, mostly without concomitant C3 deposits, in more than 80% of the patients. This finding is reminiscent of the increased C4d deposits on E previously observed to correlate with sub endothelial pericapillary deposits in organ transplant rejection, and with clinical SLE flares. Conversely, significant C3 deposits on E were only observed among » of the patients. The decrease of CR1/E density, deposits of C4 fragments on E and previously reported detection of virus spikes or C3 on E among COVID-19 patients, suggest that the handling and clearance of immune complex or complement fragment coated cell debris may play an important role in the pathophysiology of SARS-CoV-2. Measurement of C4d deposits on E might represent a surrogate marker for assessing inflammation and complement activation occurring in organ capillaries and CR1/E decrease might represent a cumulative index of complement activation in COVID-19 patients. Taken together, these original findings highlight the participation of complement regulatory proteins and indicate that E are important in immune pathophysiology of COVID-19 patients. Besides a potential role for monitoring the course of disease, these observations suggest that novel therapies such as the use of CR1, or CR1-like molecules, in order to down regulate complement activation and inflammation, should be considered.


Subject(s)
Antigen-Antibody Complex/metabolism , COVID-19/immunology , Complement C4b/metabolism , Erythrocytes/metabolism , Peptide Fragments/metabolism , Receptors, Complement 3b/metabolism , SARS-CoV-2/physiology , COVID-19/therapy , Complement Activation , Erythrocytes/pathology , France , Gene Expression Regulation , Humans , Intensive Care Units , Receptors, Complement 3b/genetics , Receptors, Complement 3b/therapeutic use
6.
Clin Immunol ; 219: 108555, 2020 10.
Article in English | MEDLINE | ID: covidwho-696063

ABSTRACT

Respiratory failure and acute kidney injury (AKI) are associated with high mortality in SARS-CoV-2-associated Coronavirus disease 2019 (COVID-19). These manifestations are linked to a hypercoaguable, pro-inflammatory state with persistent, systemic complement activation. Three critical COVID-19 patients recalcitrant to multiple interventions had skin biopsies documenting deposition of the terminal complement component C5b-9, the lectin complement pathway enzyme MASP2, and C4d in microvascular endothelium. Administration of anti-C5 monoclonal antibody eculizumab led to a marked decline in D-dimers and neutrophil counts in all three cases, and normalization of liver functions and creatinine in two. One patient with severe heart failure and AKI had a complete remission. The other two individuals had partial remissions, one with resolution of his AKI but ultimately succumbing to respiratory failure, and another with a significant decline in FiO2 requirements, but persistent renal failure. In conclusion, anti-complement therapy may be beneficial in at least some patients with critical COVID-19.


Subject(s)
Acute Kidney Injury/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/pathogenicity , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Acute Kidney Injury/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/virology , Adult , Betacoronavirus/immunology , Biomarkers/metabolism , COVID-19 , Complement Activation/drug effects , Complement C4b/antagonists & inhibitors , Complement C5/antagonists & inhibitors , Complement Membrane Attack Complex/antagonists & inhibitors , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Immunity, Humoral/drug effects , Male , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/immunology , Middle Aged , Neutrophils/immunology , Neutrophils/pathology , Pandemics , Peptide Fragments/antagonists & inhibitors , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL